Graph equations for line graphs, middle graphs, total closed neighborhood graphs and total closed edge neighborhood graphs

B. Basavanagoud ${ }^{1 *}$ and Sangeeta N. Bhat ${ }^{2}$
${ }^{1}$ Department of Mathematics, Karnatak University, Dharwad-580 003, India
E-mail: bgouder1@yahoo.co.in
${ }^{2}$ Department of Mathematics, K. J. Somaiya College of Arts and Commerce, Vidyavihar, Mumbai-400 077, India E-mail: sangeeta_bhat74@yahoo.com

Abstract

Let G be a graph with vertex set $V(G)$, edge set $E(G)$. For each vertex (or edge) of G, a new vertex is taken and the resulting set of vertices is denoted by $V_{1}(G)$ (or $E_{1}(G)$) respectively. Let \bar{G} and $L(G)$ denote the complement graph and line graph of G. The middle graph $M(G)$ as an intersection graph $\Omega(F)$ on the vertex set $V(G)$ of any graph G. Let $E(G)$ be the edge set of G and $F=V^{\prime}(G) \cup E(G)$ where $V^{\prime}(G)$ indicates the family of one-point subsets of the set $V(G)$, then $M(G) \cong \Omega(F)$. The total closed neighborhood $\operatorname{graph} N_{t c}(G)$ of a graph G is defined as the graph having vertex set $V(G) \cup V_{1}(G)$ and two vertices are adjacent if they correspond to adjacent vertices of G or one corresponds to a vertex u_{i}^{\prime} of $V_{1}(G)$ and the other to a vertex w_{j} of G and w_{j} is in $N\left[u_{i}\right]$ (see [1]). For a graph G, we define the total closed edge neighborhood graph $\mathrm{EN}_{t c}(G)$ of a graph G as the graph having vertex set $E(G) \cup E_{1}(G)$ with two vertices are adjacent if they correspond to adjacent edges of G or one corresponds to an element e_{i}^{\prime} of $E_{1}(G)$ and the other to an element e_{j} of $E(G)$ where e_{j} is in $N\left[e_{i}\right]$.

In this paper, we solve the graph equations $L(G) \cong N_{t c}(H), \overline{L(G)} \cong N_{t c}(H)$, $M(G) \cong N_{t c}(H), \overline{M(G)} \cong N_{t c}(H), L(G) \cong \mathrm{EN}_{t c}(H), \overline{L(G)} \cong \mathrm{EN}_{t c}(H)$, $M(G) \cong \mathrm{EN}_{t c}(H)$ and $\overline{M(G)} \cong \mathrm{EN}_{t c}(H)$.
The symbol \cong stands for isomorphism between two graphs.
Keywords: Line graph, Middle graph, Total closed neighborhood graph, Total closed edge neighborhood graph.
2000 Mathematics Subject Classification: 05C99
(Received: 22 December 2009)

1 Introduction

By a graph, we mean a finite, undirected graph without loops or multiple edges. Definitions not given here may be found in [2]. For a graph G, let $V(G)$ and $E(G)$ denote its vertex set and edge set respectively.

Hamada and Yoshimura [3] defined a graph $M(G)$ as an intersection graph $\Omega(\mathrm{F})$ on the vertex set $V(G)$ of any graph G . Let $E(G)$ be the edge set of G and $\mathrm{F}=\mathrm{V} \prime(G) \cup E(G)$ where $\mathrm{V} \prime(G)$ indicates the family of one-point subsets of the set $V(G)$. Let $M(G) \cong$ $\Omega(\mathrm{F}) . M(G)$ is called the middle graph of G.

The open-neighborhood $N(u)$ of a vertex u in $V(G)$ is the set of all vertices adjacent to u.

$$
N(u)=\{v / u v \in E(G)\}
$$

The closed neighborhood $N[u]$ of a vertex u in $V(G)$ is given by

$$
N[u]=\{u\} \cup N(u) .
$$

For each vertex u_{i} of G , a new vertex u_{i}^{\prime} is taken and the resulting set of vertices is denoted by $V_{1}(G)$.

The total closed neighborhood graph $N_{t c}(G)$ of a graph G is defined as the graph having vertex set $V(G) \cup V_{1}(G)$ and two vertices are adjacent if they correspond to adjacent vertices of G or one corresponds to a vertex u_{i}^{\prime} of $V_{1}(G)$ and the other to a vertex w_{j} of G and w_{j} is in $N\left[u_{i}\right]$ (see [1]).

The open-neighborhood $N\left(e_{i}\right)$ of an edge e_{i} in $E(G)$ is the set of edges adjacent to e_{i}.

$$
N\left(e_{i}\right)=\left\{e_{j} / e_{i} \quad \text { and } e_{j} \text { are adjacent in } G\right\} .
$$

The closed-neighborhood $N\left[e_{i}\right]$ of an edge e_{i} in $E(G)$ is given by

$$
N\left[e_{i}\right]=\left\{e_{i}\right\} \cup N\left(e_{i}\right)
$$

For each edge e_{i} of G, a new vertex e_{i}^{\prime} is taken and resulting set of vertices is denoted by $E_{1}(G)$.

For a graph G, we define the total closed edge neighborhood graph $\mathrm{EN}_{t c}(G)$ of a graph G as the graph having vertex set $E(G) \cup E_{1}(G)$ with two vertices are adjacent if they correspond to adjacent edges of G or one corresponds to an element e_{i}^{\prime} of $E_{1}(G)$ and the other to an element e_{j} of $E(G)$, where e_{j} is in $N\left[e_{i}\right]$.

In Fig. 1, a graph G and its $N_{t c}(G)$ and $\mathrm{EN}_{t c}(G)$ are shown.

Figure 1: (a): G, (b): $N_{t c}(G)$ and (c) $\mathrm{EN}_{t c}(G)$.
The symbol \cong stands for isomorphism between two graphs. Let $\bar{G}, L(G)$ and $T(G)$ denote respectively the complement, the line graph and the total graph of G. Cvetkoviè and Simiè [4] solved graph equations $L(G) \cong T(H), \overline{L(G)} \cong T(H)$. Akiyama et al. [5] solved graph equations $L(G) \cong M(H) ; M(G) \cong T(H) ; \overline{M(G)} \cong T(H)$ and $\overline{L(G)} \cong M(H)$. Here we solve the following graph equations:
(1) $L(G) \cong N_{t c}(H)$.
(2) $\overline{L(G)} \cong N_{t c}(H)$.
(3) $M(G) \cong N_{t c}(H)$.
(4) $\overline{M(G)} \cong N_{t c}(H)$.
(5) $L(G) \cong \mathrm{EN}_{t c}(H)$.
(6) $\overline{L(G)} \cong \mathrm{EN}_{t c}(H)$.
(7) $M(G) \cong \mathrm{EN}_{t c}(H)$.
(8) $\overline{M(G)} \cong \mathrm{EN}_{t c}(H)$.

Beineke has shown in [6] that a graph G is a line graph if and only if G has none of the nine specified graphs $F_{i}, i=1,2, \ldots, 9$ as an induced subgraph. We depict here three of the nine graphs which are useful to extract our later results. These are $F_{1}=K_{1,3}, F_{2}$ (see Fig. 2), and $F_{3}=K_{5}-x$, where x is any edge of K_{5}. A graph G^{+}is the endedge graph of a graph G if G^{+}is obtained from G by adjoining an endedge $u_{i} u_{i}^{\prime}$ at each vertex u_{i} of G [5]. Hamada and Yoshimura [3] have proved that $M(G) \cong L\left(G^{+}\right)$.

Figure 2: F_{2}.

2 The solution of $L(G) \cong N_{t c}(H)$

Any graph H which is a solution of the above equation, satisfies the following properties:
(i) H must be a line graph, since H is an induced subgraph of $N_{t c}(H)$.
(ii) H does not contain a cut-vertex, since otherwise, F_{1} would be an induced subgraph of $N_{t c}(H)$.
(iii) H does not contain a component having more than two vertices, since otherwise, F_{1} would be an induced subgraph of $N_{t c}(H)$.

It is not difficult to see from observation (ii) that H has no cut-vertices. We consider the following cases:
Case 1. Suppose H is connected. Then H is K_{1} or K_{2}. The corresponding G is $K_{1,2}$ or $K_{3} \circ K_{2}$ respectively.
Case 2. Suppose H is disconnected. Then H is $n K_{1}$ or $n K_{2}$. The corresponding G is $n K_{1,2}$ or $n\left(K_{3} \circ K_{2}\right)$ respectively.

From the above discussion, we conclude the following

Theorem 2.1.

The following pairs (G, H) are all pairs of graphs satisfying the graph equation $L(G)=N_{t c}(H)$:

$$
\left(n K_{1,2}, n K_{1}, \quad n \geq 1 ; \quad \text { and } \quad\left(n\left(K_{3} \circ K_{2}\right), n K_{2}\right), \quad n \geq 1\right) .
$$

3 The solution of $\overline{L(G)} \cong N_{t c}(H)$

First, we observe that in this case H satisfies the following properties:
(i) If H has at least one edge, then it is connected, since otherwise, $\overline{F_{1}}$ and $\overline{F_{2}}$ are induced subgraphs of $N_{t c}(H)$.
(ii) H does not contain a path P_{4} as an induced subgraph, since otherwise, $\overline{F_{1}}$ is an induced subgraph of $N_{t c}(H)$.
(iii) H does not contain $C_{n}, n \geq 5$ as an induced subgraph, since otherwise, $\overline{F_{1}}$ would be an induced subgraph of $N_{t c}(H)$.
(iv) H does not contain more than one cut-vertex, since otherwise, $\overline{F_{1}}$ would be an induced subgraph of $N_{t c}(H)$.
(v) H does not contain $K_{1,4}$ as an induced subgraph, since otherwise, $\overline{F_{3}}$ would be an induced subgraph of $N_{t c}(H)$.
(vi) H does not contain a cut-vertex which lies on blocks other than K_{2}, since otherwise, $\overline{F_{2}}$ is an induced subgraph of $N_{t c}(H)$.

Thus H has at most one cut-vertex. We consider the following cases:
Case 1. Suppose H has exactly one cut-vertex. Then H is $K_{1,2}$ or $K_{1,3}$. Corresponding G is $\left(C_{4} \circ K_{2}\right) \cup K_{2}$ or $\left(K_{4} \circ K_{2}\right) \cup K_{2}$ respectively.
Case 2. Suppose H has no cut-vertices. We consider the following subcases:
Subcase 2.1. $H=K_{n}$. In this case $\left(K_{1, n} \cup n K_{2}, K_{n}\right), n \geq 1$ and $\left(K_{3} \cup 3 K_{2}, K_{3}\right)$ are the solutions.
Subcase 2.2. $H=K_{m, n}$. Then from observation (v), $\left(C_{4} \circ K_{4}, K_{2,3}\right)$ and $\left(K_{4} \circ K_{4}, K_{3,3}\right)$ are the solutions.
Subcase 2.3. H is neither a complete graph nor a complete bipartite graph. From observation (iii), H is $C_{n}, n \leq 4$ or $K_{4}-x$, where x is any edge of K_{4}. In this case the solutions are $\left(K_{1,3} \cup 3 K_{2}, C_{3}\right),\left(K_{3} \cup 3 K_{2}, C_{3}\right),\left(C_{4} \circ C_{4}, C_{4}\right)$ and $\left(G^{\prime}, K_{4}-x\right)$ where G^{\prime} is the graph shown in Fig. 3 are the solutions.

Figure 3: G^{\prime}.
Thus we have the following
Theorem 3.1. The following pairs (G, H) are all pairs of graphs satisfying the graph equation $\overline{L(G)} \cong N_{t c}(H)$:
$\left(\left(C_{4} \circ K_{2}\right) \cup K_{2}, K_{1,2}\right) ;\left(\left(K_{4} \circ K_{2}\right) \cup K_{2}, K_{1,3}\right) ;\left(K_{1, n} \cup n K_{2}, K_{n}\right), n \geq 1 ;\left(K_{3} \cup 3 K_{2}, K_{3}\right)$; $\left(C_{4} \circ K_{4}, K_{2,3}\right) ;\left(K_{4} \circ K_{4}, K_{3,3}\right) ;\left(C_{4} \circ C_{4}, C_{4}\right)$; and $\left(G^{\prime}, K_{4}-x\right)$, where x is any edge of K_{4} and G^{\prime} is the graph shown in Fig. 3.

4 The solution of $M(G) \cong N_{t c}(H)$

Theorem 2.1 gives solutions of the graph equation $L(G) \cong N_{t c}(H)$. But none of these is of the form $\left(G^{+}, H\right)$. Hence, there is no solution of the equation $M(G) \cong N_{t c}(H)$. Now, we state the following result.

Theorem 4.1. There is no solution of the graph equation $M(G) \cong N_{t c}(H)$.

5 The solution of $\overline{M(G)} \cong N_{t c}(H)$

Theorem 3.1 gives solution of the equation $\overline{L(G)} \cong N_{t c}(H)$. But none of these is of the form $\left(G^{+}, H\right)$. Therefore there is no solution of the graph equation $\overline{M(G)} \cong N_{t c}(H)$. Now, we state the following result.

Theorem 5.1. There is no solution of the graph equation $\overline{M(G)} \cong N_{t c}(H)$.

6 The solution of $L(G) \cong \mathrm{EN}_{t c}(H)$

In this case, H satisfies the following properties:
(i) H does not contain a cycle $C_{n}, n \geq 3$ as a subgraph, since otherwise, F_{1} is an induced subgraph of $\mathrm{EN}_{t c}(H)$.
(ii) H does not contain a component having more than one cut-vertex, since otherwise, F_{1} is an induced subgraph of $\mathrm{EN}_{t c}(H)$.
(iii) The maximum degree of H does not exceed two, since otherwise, F_{1} is an induced subgraph of $\mathrm{EN}_{t c}(H)$.
(iv) H does not contain a cut-vertex which lies on more than two blocks, since otherwise, F_{1} is an induced subgraph of $\mathrm{EN}_{t c}(H)$.
(v) H does not contain a cut-vertex which lies on a block other than K_{2}, since otherwise, F_{1} is an induced subgraph of $\mathrm{EN}_{t c}(H)$.

From observation (ii), it follows that every component of H has at most one cutvertex. We consider the following cases:
Case 1. Suppose H has no cut-vertices. Then from observation (i), H is $n K_{2}, n \geq 1$. The corresponding G is $n K_{1,2}, n \geq 1$.
Case 2. Suppose H has cut-vertex. We consider the following subcases:
Subcase 2.1. Assume H is connected. Then H is $K_{1,2}$. The corresponding G is $K_{3} \circ K_{2}$.
Subcase 2.2. Assume H is disconnected. Then H is $n K_{1,2} \cup m K_{2}, m \geq 0, n \geq 1$. The corresponding G is $n\left(K_{3} \circ K_{2}\right) \cup m K_{1,2}$. From above discussions, we conclude the following:

Theorem 6.1. The following pairs (G, H) are all pairs of graphs satisfying the graph equation $L(G) \cong \mathrm{EN}_{t c}(H)$:

$$
\begin{aligned}
& \left(n K_{1,2}, n K_{2}\right), \quad n \geq 1 ; \quad\left(K_{3} \circ K_{2}, K_{1,2}\right) ; \quad \text { and } \\
& \left(n\left(K_{3} \circ K_{2}\right) \cup m K_{1,2}, \quad n K_{1,2} \cup m K_{2}\right), \quad m \geq 0, \quad n \geq 1 .
\end{aligned}
$$

7 The solution of $\overline{L(G)} \cong \mathrm{EN}_{t c}(H)$

In this case, H satisfies the following properties:
(i) If H is disconnected, then it has at most three components, each of which is K_{2} since otherwise, $\overline{F_{3}}$ is an induced subgraph of $\mathrm{EN}_{t c}(H)$.
(ii) H is not a path $P_{n}, n \geq 5$ since otherwise, $\overline{F_{1}}$ is an induced subgraph of $\mathrm{EN}_{t c}(H)$.
(iii) H does not contain $C_{n}, n \geq 5$, since otherwise, $\overline{F_{2}}$ is an induced subgraph of $\mathrm{EN}_{t c}(H)$.
(iv) H is not a complete bipartite graph $K_{m, n}$, for $m \geq 3$ or $n \geq 3$, since otherwise, $\overline{F_{2}}$ is an induced subgraph of $\mathrm{EN}_{t c}(H)$.
(v) H does not contain more than two cut-vertices, since otherwise, $\overline{F_{1}}$ is an induced subgraph of $\mathrm{EN}_{t c}(H)$.

Thus H has at most two cut-vertices. We consider the following cases:
Case 1. If H has exactly one cut-vertex, then H is $K_{1, n}, n \geq 1$ or $K_{3} \circ K_{2}$.
For $H=K_{1, n}, n \geq 1, G=K_{1, n} \cup n K_{2}$
For $H=K_{3} \circ K_{2}, G$ is a graph as shown in Fig. 3 .
Case 2. If H has exactly two cut-vertices. Then H is a path P_{4}. Corresponding G is $\left(C_{4} \circ K_{2}\right) \cup K_{2}$.
Case 3. If H has no cut-vertices. We consider the following subcases:
Subcase 3.1. If H is disconnected. Then from observation (i), H is $n K_{2}, n \leq 3$. For n $=1, H=K_{2}$ and $G=2 K_{2}$. For $n=2, H=2 K_{2}$ and $G=C_{4}$. For $n=3, H=3 K_{2}$ and $G=K_{4}$.
Subcase 3.2. If H is connected. We consider the following subcases.
Subcase 3.2.1. $H=K_{n}$. In this case, it follows from observation (iii), that $\left(2 K_{2}, K_{2}\right),\left(K_{3} \cup\right.$ $\left.3 K_{2}, K_{3}\right),\left(K_{1,3} \cup 3 K_{2}, K_{3}\right)$ and $\left(G^{\prime}, K_{4}\right)$ where G^{\prime} is the graph shown in Fig. 4 are the solutions.

Figure 4:

Subcase 3.2.2. $H=K_{m, n}$. Then from observation (iv), $\left(2 K_{2}, K_{1,1}\right),\left(K_{1,2} \cup 2 K_{2}, K_{1,2}\right)$ and $\left(C_{4} \circ C_{4}, K_{2,2}\right)$ are the solutions.
Subcases 3.2.3. H is neither a complete graph nor a complete bipartite graph. From observation (iii), H is $C_{n}, n \leq 4$ or $K_{4}-x$, where x is any edge of K_{4}. In this case
$\left(K_{3} \cup 3 K_{2}, C_{3}\right),\left(K_{1,3} \cup 3 K_{2}, C_{3}\right),\left(C_{4} \circ C_{4}, C_{4}\right)$ and $\left(G^{\prime}, K_{4}-x\right)$, where G^{\prime} is the graph as shown in Fig. 5, are the solutions.

Figure 5:

Thus the graph equation is solved and we have the following
Theorem 7.1. The following pairs (G, H) are all pairs of graphs satisfying the graph equation $\overline{L(G)} \cong \mathrm{EN}_{t c}(H)$:
$\left(K_{1, n} \cup n K_{2}, K_{1, n}\right), \quad n \geq 1 ; \quad\left(\left(C_{4} \circ K_{2}\right) \cup K_{2}, P_{4}\right) ; \quad\left(C_{4}, 2 K_{2}\right) ;\left(K_{4}, 3 K_{2}\right) ;$
$\left(K_{3} \cup 3 K_{2}, K_{3}\right) ;\left(K_{1,3} \cup 3 K_{2}, K_{3}\right) ;\left(C_{4} \circ C_{4}, C_{4}\right) ;\left(G^{\prime}, K_{3} \circ K_{2}\right)$,
where G^{\prime} is the graph as shown in Fig. 3; $\left(G^{\prime}, K_{4}\right)$, where G^{\prime} is the graph as shown in Fig. 4; and $\left(G^{\prime}, K_{4}-x\right)$, where G^{\prime} is the graph as shown in Fig. 5.

8 The solution of $M(G) \cong \mathrm{EN}_{t c}(H)$

Theorem 6.1 gives solutions of the equation $L(G) \cong \mathrm{EN}_{t c}(H)$. But none of these is of the form $\left(G^{+}, H\right)$. Hence there is no solution of the equation $M(G) \cong \mathrm{EN}_{t c}(H)$. Thus we obtain the following result.

Theorem 8.1. There is no solution of the graph equation $M(G) \cong \mathrm{EN}_{t c}(H)$.

Theorem 7.1 gives the solution of the graph equation $\overline{L(G)} \cong \mathrm{EN}_{t c}(H)$. Among these only one solution $\left(2 K_{2}, K_{2}\right)$ is of the form $\left(G^{+}, H\right)$. Therefore, the solution of the equation $\overline{M(G)} \cong \mathrm{EN}_{t c}(H)$ is $\left(2 K_{1}, K_{2}\right)$. Thus we have the following result.

Theorem 8.2. There is only one solution $\left(2 K_{1}, K_{2}\right)$ of the graph equation $\overline{M(G)} \cong$ $\mathrm{EN}_{t c}(H)$.

References

[1] V. R. Kulli and Nanda S. Warad, On the total closed neighborhood graph of a graph, J. of Discrete Math. Sci. and Cryptography, 4 (2001), No. 2-3, 109-144.
[2] F. Harary, Graph Theory, Addison-Wesley, Reading, Mass, (1969).
[3] T Hamada and I. Yoshimura, Traversability and connectivity of the middle graph of a graph, Discrete Math. 14 (1976) 247-256.
[4] D. M. Cvetkoviè and S. K. Simiè, Graph equations for line graphs and total graphs, Discrete Math. 13 (1975) 315-320.
[5] T. Akiyama, T. Hamada and I. Yoshimura, Graph equations for line graphs, total graphs and middle graphs TRU Math. 12 (2) (1976).
[6] L. W. Beineke, Derived graphs and digraphs, in : H. Sachs, V. Voss and H. Walther, eds. Beiträge Zur Graphentheorie (Teubner, Leipzig. 1968) 17-33.

