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Abstract. Let G be a graph with vertex set V (G) , edge set E(G). For each

vertex (or edge) of G, a new vertex is taken and the resulting set of vertices

is denoted by V1(G) (or E1(G)) respectively. Let G and L(G) denote the

complement graph and line graph of G. The middle graph M(G) as an

intersection graph Ω(F) on the vertex set V (G) of any graph G. Let E(G)

be the edge set of G and F = V ′(G)∪ E(G) where V ′(G) indicates the

family of one-point subsets of the set V (G) , then M(G)∼= Ω(F).

The total closed neighborhood graph Ntc(G) of a graph G is defined as the

graph having vertex set V (G)∪V1(G) and two vertices are adjacent if they

correspond to adjacent vertices of G or one corresponds to a vertex u′i of

V1(G) and the other to a vertex w j of G and w j is in N[ui] (see [1]).

For a graph G, we define the total closed edge neighborhood graph ENtc(G)

of a graph G as the graph having vertex set E(G)∪E1(G) with two vertices

are adjacent if they correspond to adjacent edges of G or one corresponds

to an element e′i of E1(G) and the other to an element e j of E(G) where e j

is in N[ei].
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In this paper, we solve the graph equations L(G)∼=Ntc(H), L(G)∼=Ntc(H),

M (G) ∼= Ntc(H), M (G) ∼= Ntc(H), L(G) ∼= ENtc(H), L(G) ∼= ENtc(H),

M (G)∼= ENtc(H) and M (G)∼= ENtc(H).

The symbol ∼= stands for isomorphism between two graphs.
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Total closed edge neighborhood graph.
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1 Introduction

By a graph, we mean a finite, undirected graph without loops or multiple edges. Defi-

nitions not given here may be found in [2]. For a graph G, let V (G) and E(G) denote

its vertex set and edge set respectively.

Hamada and Yoshimura [3] defined a graph M(G) as an intersection graph Ω(F) on

the vertex set V (G) of any graph G. Let E(G) be the edge set of G and F = V′(G)∪E(G)

where V′(G) indicates the family of one-point subsets of the set V (G) . Let M(G) ∼=

Ω(F). M(G) is called the middle graph of G.

The open-neighborhood N(u) of a vertex u in V (G) is the set of all vertices adjacent

to u.

N(u) = {v/uv ∈ E(G)}

The closed neighborhood N[u] of a vertex u in V (G) is given by

N[u] = {u}∪N(u).

For each vertex ui of G, a new vertex u′i is taken and the resulting set of vertices is

denoted by V1(G).

The total closed neighborhood graph Ntc(G) of a graph G is defined as the graph

having vertex set V(G) ∪ V1(G) and two vertices are adjacent if they correspond to

adjacent vertices of G or one corresponds to a vertex u′i of V1(G) and the other to a

vertex w j of G and w j is in N[ui] (see [1]).
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The open-neighborhood N(ei) of an edge ei in E(G) is the set of edges adjacent

to ei.

N(ei) = {e j/ei and e j are adjacent in G}.

The closed-neighborhood N[ei] of an edge ei in E(G) is given by

N[ei] = {ei}∪N(ei)

For each edge ei of G, a new vertex e′i is taken and resulting set of vertices is denoted

by E1(G).

For a graph G, we define the total closed edge neighborhood graph ENtc(G) of a

graph G as the graph having vertex set E(G)∪E1(G) with two vertices are adjacent if

they correspond to adjacent edges of G or one corresponds to an element e′i of E1(G)

and the other to an element e j of E(G), where e j is in N[ei].

In Fig. 1, a graph G and its Ntc(G) and ENtc(G) are shown.
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Figure 1: (a): G, (b): Ntc(G) and (c) ENtc(G).

The symbol ∼= stands for isomorphism between two graphs. Let G, L(G) and

T (G) denote respectively the complement, the line graph and the total graph of G.

Cvetkoviè and Simiè [4] solved graph equations L(G)∼= T (H),L(G)∼= T (H). Akiyama

et al. [5] solved graph equations L(G) ∼= M(H); M(G) ∼= T (H);M(G) ∼= T (H) and

L(G)∼= M(H). Here we solve the following graph equations:
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(1) L(G)∼= Ntc(H).

(2) L(G)∼= Ntc(H).

(3) M(G)∼= Ntc(H).

(4) M(G)∼= Ntc(H).

(5) L(G)∼= ENtc(H).

(6) L(G)∼= ENtc(H).

(7) M(G)∼= ENtc(H).

(8) M(G)∼= ENtc(H).

Beineke has shown in [6] that a graph G is a line graph if and only if G has none of the

nine specified graphs Fi, i = 1, 2, . . . , 9 as an induced subgraph. We depict here three of

the nine graphs which are useful to extract our later results. These are F1 = K1,3,F2 (see

Fig. 2), and F3 = K5 − x, where x is any edge of K5. A graph G+ is the endedge graph

of a graph G if G+ is obtained from G by adjoining an endedge uiu
′
i at each vertex ui of

G [5]. Hamada and Yoshimura [3] have proved that M(G)∼= L(G+).
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b

Figure 2: F2.

2 The solution of L(G)∼= Ntc(H)

Any graph H which is a solution of the above equation, satisfies the following proper-

ties:
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(i) H must be a line graph, since H is an induced subgraph of Ntc(H).

(ii) H does not contain a cut-vertex, since otherwise, F1 would be an induced subgraph

of Ntc(H).

(iii) H does not contain a component having more than two vertices, since otherwise,

F1 would be an induced subgraph of Ntc(H).

It is not difficult to see from observation (ii) that H has no cut-vertices. We consider

the following cases:

Case 1. Suppose H is connected. Then H is K1 or K2. The corresponding G is K1,2 or

K3 ◦K2 respectively.

Case 2. Suppose H is disconnected. Then H is nK1 or nK2. The corresponding G is

nK1,2 or n(K3 ◦K2) respectively.

From the above discussion, we conclude the following

Theorem 2.1.

The following pairs (G,H) are all pairs of graphs satisfying the graph equation

L(G) = Ntc(H):

(nK1,2,nK1, n ≥ 1; and (n(K3 ◦K2),nK2), n ≥ 1) .

3 The solution of L(G)∼= Ntc(H)

First, we observe that in this case H satisfies the following properties:

(i) If H has at least one edge, then it is connected, since otherwise, F1 and F2 are

induced subgraphs of Ntc(H).

(ii) H does not contain a path P4 as an induced subgraph, since otherwise, F1 is an

induced subgraph of Ntc(H).

(iii) H does not contain Cn, n ≥ 5 as an induced subgraph, since otherwise, F1 would

be an induced subgraph of Ntc(H).
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(iv) H does not contain more than one cut-vertex, since otherwise, F1 would be an

induced subgraph of Ntc(H).

(v) H does not contain K1,4 as an induced subgraph, since otherwise, F3 would be an

induced subgraph of Ntc(H).

(vi) H does not contain a cut-vertex which lies on blocks other than K2, since other-

wise, F2 is an induced subgraph of Ntc(H).

Thus H has at most one cut-vertex. We consider the following cases:

Case 1. Suppose H has exactly one cut-vertex. Then H is K1,2 or K1,3. Corresponding

G is (C4 ◦K2)∪K2 or (K4 ◦K2)∪K2 respectively.

Case 2. Suppose H has no cut-vertices. We consider the following subcases:

Subcase 2.1. H = Kn. In this case (K1,n∪ nK2,Kn), n ≥ 1 and (K3 ∪ 3K2,K3) are the

solutions.

Subcase 2.2. H = Km,n. Then from observation (v), (C4 ◦K4,K2,3) and (K4 ◦K4,K3,3)

are the solutions.

Subcase 2.3. H is neither a complete graph nor a complete bipartite graph. From

observation (iii), H is Cn, n ≤ 4 or K4 − x, where x is any edge of K4. In this case the

solutions are (K1,3∪3K2,C3), (K3∪3K2,C3), (C4 ◦C4, C4) and (G′,K4−x) where G′ is

the graph shown in Fig. 3 are the solutions.
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Figure 3: G′.

Thus we have the following

Theorem 3.1. The following pairs (G,H) are all pairs of graphs satisfying the graph

equation L(G)∼= Ntc(H):
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((C4 ◦K2)∪K2,K1,2); ((K4 ◦K2)∪K2,K1,3); (K1,n ∪nK2,Kn), n ≥ 1 ; (K3 ∪3K2,K3);

(C4 ◦K4,K2,3); (K4 ◦K4,K3,3); (C4 ◦C4,C4); and (G′,K4 − x), where x is any edge of

K4 and G′ is the graph shown in Fig. 3.

4 The solution of M(G)∼= Ntc(H)

Theorem 2.1 gives solutions of the graph equation L(G)∼= Ntc(H). But none of these is

of the form (G+,H). Hence, there is no solution of the equation M(G)∼= Ntc(H). Now,

we state the following result.

Theorem 4.1. There is no solution of the graph equation M(G)∼= Ntc(H).

5 The solution of M(G)∼= Ntc(H)

Theorem 3.1 gives solution of the equation L(G)∼= Ntc(H). But none of these is of the

form (G+,H). Therefore there is no solution of the graph equation M(G) ∼= Ntc(H).

Now, we state the following result.

Theorem 5.1. There is no solution of the graph equation M(G)∼= Ntc(H).

6 The solution of L(G)∼= ENtc(H)

In this case, H satisfies the following properties:

(i) H does not contain a cycle Cn, n ≥ 3 as a subgraph, since otherwise, F1 is an

induced subgraph of ENtc(H).

(ii) H does not contain a component having more than one cut-vertex, since other-

wise, F1 is an induced subgraph of ENtc(H).

(iii) The maximum degree of H does not exceed two, since otherwise, F1 is an induced

subgraph of ENtc(H).
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(iv) H does not contain a cut-vertex which lies on more than two blocks, since other-

wise, F1 is an induced subgraph of ENtc(H).

(v) H does not contain a cut-vertex which lies on a block other than K2, since other-

wise, F1 is an induced subgraph of ENtc(H).

From observation (ii), it follows that every component of H has at most one cut-

vertex. We consider the following cases:

Case 1. Suppose H has no cut-vertices. Then from observation (i), H is nK2, n ≥ 1.

The corresponding G is nK1,2, n ≥ 1.

Case 2. Suppose H has cut-vertex. We consider the following subcases:

Subcase 2.1. Assume H is connected. Then H is K1,2. The corresponding G is K3 ◦K2.

Subcase 2.2. Assume H is disconnected. Then H is nK1,2 ∪ mK2, m ≥ 0, n ≥ 1.

The corresponding G is n(K3 ◦K2)∪mK1,2. From above discussions, we conclude the

following:

Theorem 6.1. The following pairs (G,H) are all pairs of graphs satisfying the graph

equation L(G)∼= ENtc(H):

(nK1,2,nK2), n ≥ 1; (K3 ◦K2,K1,2); and

(n(K3 ◦K2)∪mK1,2, nK1,2 ∪mK2) , m ≥ 0, n ≥ 1.

7 The solution of L(G)∼= ENtc(H)

In this case, H satisfies the following properties:

(i) If H is disconnected, then it has at most three components, each of which is K2

since otherwise, F3 is an induced subgraph of ENtc(H).

(ii) H is not a path Pn, n ≥ 5 since otherwise, F1 is an induced subgraph of ENtc(H).

(iii) H does not contain Cn, n ≥ 5, since otherwise, F2 is an induced subgraph of

ENtc(H).
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(iv) H is not a complete bipartite graph Km,n , for m ≥ 3 or n ≥ 3, since otherwise, F2

is an induced subgraph of ENtc(H).

(v) H does not contain more than two cut-vertices, since otherwise, F1 is an induced

subgraph of ENtc(H).

Thus H has at most two cut-vertices. We consider the following cases:

Case 1. If H has exactly one cut-vertex, then H is K1,n, n ≥ 1 or K3 ◦K2.

For H = K1,n, n ≥ 1, G = K1,n∪ nK2

For H = K3 ◦K2 , G is a graph as shown in Fig. 3.

Case 2. If H has exactly two cut-vertices. Then H is a path P4. Corresponding G is

(C4 ◦K2)∪K2.

Case 3. If H has no cut-vertices. We consider the following subcases:

Subcase 3.1. If H is disconnected. Then from observation (i), H is nK2 , n ≤ 3. For n

= 1, H = K2 and G = 2K2. For n = 2, H = 2K2 and G =C4. For n = 3, H = 3K2 and

G = K4.

Subcase 3.2. If H is connected. We consider the following subcases.

Subcase 3.2.1. H =Kn. In this case, it follows from observation (iii), that (2K2,K2),(K3∪

3K2,K3),(K1,3∪3K2,K3) and (G′,K4) where G′ is the graph shown in Fig. 4 are the so-

lutions.
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Figure 4:

Subcase 3.2.2. H = Km,n. Then from observation (iv), (2K2,K1,1),(K1,2 ∪ 2K2,K1,2)

and (C4 ◦C4,K2,2) are the solutions.

Subcases 3.2.3. H is neither a complete graph nor a complete bipartite graph. From

observation (iii), H is Cn, n ≤ 4 or K4 − x, where x is any edge of K4. In this case
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(K3 ∪3K2,C3),(K1,3 ∪3K2,C3),(C4 ◦C4,C4) and (G′,K4 − x), where G′ is the graph as

shown in Fig. 5, are the solutions.
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Figure 5:

Thus the graph equation is solved and we have the following

Theorem 7.1. The following pairs (G,H) are all pairs of graphs satisfying the graph

equation L(G)∼= ENtc(H):

(K1,n ∪nK2,K1,n), n ≥ 1; ((C4 ◦K2)∪K2,P4); (C4,2K2);(K4,3K2);

(K3 ∪3K2,K3); (K1,3 ∪3K2,K3); (C4 ◦C4,C4);(G
′,K3 ◦K2),

where G′ is the graph as shown in Fig. 3; (G′,K4), where G′ is the graph as shown in

Fig. 4; and (G′,K4 − x), where G′ is the graph as shown in Fig. 5.

8 The solution of M(G)∼= ENtc(H)

Theorem 6.1 gives solutions of the equation L(G) ∼= ENtc(H). But none of these is of

the form (G+,H). Hence there is no solution of the equation M(G) ∼= ENtc(H). Thus

we obtain the following result.

Theorem 8.1. There is no solution of the graph equation M(G)∼= ENtc(H).

Theorem 7.1 gives the solution of the graph equation L(G) ∼= ENtc(H). Among

these only one solution (2K2,K2) is of the form (G+,H). Therefore, the solution of the

equation M (G)∼= ENtc(H) is (2K1,K2). Thus we have the following result.
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Theorem 8.2. There is only one solution (2K1,K2) of the graph equation M (G) ∼=

ENtc(H).
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